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Galerkin finite-element approximations and Newton’s method for solving free boundary 
problems are combined with computer-implemented techniques from nonlinear perturbation 
analysis to study solidification problems with natural convection in the melt. The Newton 
method gives rapid convergence to steady state velocity, temperature and pressure fields and 
melt-solid interface shapes, and forms the basis for algebraic methods for detecting multiple 
steady flows and assessing their stability. The power of this combination is demonstrated for a 
two-phase Rayleigh-Benard problem composed of melt and and solid in a vertical cylinder 
with the thermal boundary conditions arranged so that a static melt with a flat melt-solid 
interface is always a solution. Multiple cellular flows bifurcating from the static state are 
detected and followed as Rayleigh number is varied. Changing the boundary conditions to 
approach those appropriate for the vertical Bridgman solidification system causes imper- 
fections that eliminate the static state. The flow structure in the Bridgman system is related to 
those for the Rayleigh-Btnard system by a continuous evolution of the boundary conditions. 

1. INTRODUCTION 

Buoyancy-driven convection in the melt plays an important role in setting heat and 
mass transfer in solidification processes for producing the precise single-crystal 
semiconductor materials that are the foundation of the microelectronics industry. The 
compositional uniformity of crystals grown by either the Czochralski or floating-zone 
methods for producing silicon [ 1 ] and the vertical Bridgman-Stockbarger system [2] 
studied here is strongly coupled to the structure of the fluid motion in the melt and to 
the shape of the melt-solid interface. Obtaining a quantitative understanding of the 
composition of crystals grown by these methods requires efficient and accurate 
numerical methods for the solution of solidification models including natural 
convection in the melt. 

Even the steady state versions of these solidification problems are formidable free- 
boundary problems composed of conservation equations written in terms of the field 
variables, velocity and pressure in the melt and temperature in both phases. These 
equations are coupled to the location of the melt-solid interface through the two 
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interfacial conditions for the equilibrium melting temperature and the balance of heat 
fluxes. The convective terms in the conservation equations and the coupling between 
the temperature field and the location of the melt-solid interface introduce 
nonlinearities into the equation set. Traditional numerical schemes for free-boundary 
problems iterate between the calculation of the field variables for a particular 
interface shape and calculation of updates to the shape using either the condition for 
the melting point isothem or the balance of heat flux across the phase boundary 
distinguished for this purpose. 

In this paper, we present a Galerkin finite element method combined with 
Newton’s method for calculating axisymmetric fluid flow and melt-solid interface 
shape in a sequence of steady solidification problems. The finite-element formulation 
uses the curved meshes needed for accurate approximation to the melt-solid interface 
shape, allows simple incorporation of heat flux boundary conditions, and seems 
superior to finite difference methods ( 3-4 1 for including natural convection in steady 
solidification problems. Several recent studies 15-7 ] have demonstrated the 
advantages of formulating Newton’s methods for simultaneous solution of the 
Galerkin residual equations for the field variables and the interface shape. Each study 
shows the increase in computational efficiency due to the quadratic convergence rate 
of Newton’s method [ 8 1 compared to the linear convergence of successive iterations. 
The finite element formulation and Newton’s iteration are presented in Subsection 3.1. 

Besides giving rapid convergence, Newton’s method forms the basis for powerful 
computer-aided techniques [9-121 for tracking the nonlinear structure of the solutions 
of algebraic equations with changes in a parameter. These methods take the approach 
of bifurcation theory [ 13 \ and follow families of solutions while locating singular 
points where either two or more families have a common solution-a bifurcation 
point-or a single family turns around in the parameter. The presence of such 
singular points is also linked [ 11, 13 ] to temporal stability when the solution of the 
nonlinear equations represents the steady state of a set of evolution equations. In this 
paper, these computer-aided algorithms are applied to steady solidification problems 
to determine the structure of the flow and thermal fields and the shape of the 
melt-solid interface with changes in Rayleigh number Ra which measures the 
intensity of the convection. Our formulations of the algorithms for nonlinear analysis 
are described in detail in [ 1 l] and are briefly discussed in Subsection 3.2. 

The sequence of solidification problems described in Section 2 are based on melt 
and solid stratified in a vertical cylindrical ampoule. The problems vary according to 
the thermal boundary conditions specified along the walls of the ampoule. At one 
limit of the sequence the thermal conditions describe a two-phase Rayleigh-Binard 
problem [ 14). Melt is held below (with respect to gravity) the solid and the 
temperature distribution along the ampoule is set so that a purely axial thermal 
gradient is imposed on the melt and solid. A static melt and a flat melt-solid 
interface satisfies the Boussinesq equations and the energy balance in the solid for all 
Rayleigh numbers and is analogous to the base state from which cellular flows 
develop in the single-phase problem of a liquid in a vertical cylinder heated from 
below [ 11, 12, 15 1. The effect of the melt-solid interface on the structure of these 



NATURAL CONVECTION IN STEADY SOLIDIFICATION 3 

cellular flows is accessed by comparing the results of the single- and two-phase 
problems. For this, it is useful to review the flow structure for liquid in a vertical 
cyclinder, as discussed in [ 121. 

In the single-phase problem, the static melt becomes unstable at a critical Rayleigh 
number Raf”, and two families of axisymmetric cellular flows develop toward higher 
values of Ra. The flows in each of the families at the same value of Ra are identical 
up to a reflection about the plane perpendicular to the axis and passing through the 
middle of the cylinder. When the flows have only one cell in the axial direction the 
two flows are conveniently classified according to whether the fluid moves upward 
(1U) or downward (1D) along the axis of the cylinder. 

Although the critical values of Rayleigh number are similar for both the melt and 
melt-solid systems, the evolution of the flow fields and the structure of the flow 
families are quite different. As is shown in Section 4.1, deformation of the melt-solid 
interface caused by convective heat transfer breaks the symmetry that exists in the 
flow field for the single-phase problem and causes differences in the structures of the 
two flow families that evolve from each critical value Ra,. This loss of symmetry is 
an “imperfection” in the non-linear structure of the solution and ruptures a secondary 
bifurcation point that exists for the single-phase problem. 

The remainder of the sequence of solidification problems is populated by cylin- 
drical configurations that represent a continuous transition in the thermal boundary 
conditions between the Rayleigh-Benard and the vertical Bridgman geometries [2]. 
These changes in the thermal conditions introduce radial temperature gradients that 
destroy the static state and cause fluid motion for all values of Ra; for small 
differences from the Rayleigh-Benard problem and small deviations of the Rayleigh 
number from the critical value the structure of the flow families is described by the 
theory of imperfect bifurcations, as has been applied to natural convection by a 

PERFECT fo=O) - 
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FIG. I. Families of axisymmetric flows emanating from the first and second bifurcation points for 
both perfect (a = 0) and imperfect (a f 0) boundary conditions. Family names refer to results discussed 
in Section 4. 
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number of researchers [ 16-191. The changes in the thermal boundary conditions 
separate flow families that had joined at a bifurcation point into distinct solution 
curves; the rupturing of the solution families originating at the first two critical 
Rayleigh numbers is depicted on Fig. 1 by the dashed curves. One family evolves 
smoothly past the value of Ra, while the other exists only for values of Ra greater 
than Ra, and is locally multi-valued with respect to Ra. In Section 4, finite element 
calculations combined with techniques for analysis described in Subsection 3.2 are 
used to connect the structure of the solutions of the Rayleigh-Benard problem to 
results for solidification problems in the sequence extending to the Bridgman 
geometry. 

2. SEQUENCE OF MODEL TWO-PHASE PROBLEMS 

The two-phase Rayleigh-Benard problem and the steady-state prototype of the 
vertical Bridgman growth system studied here are mathematically embedded as the 
limiting cases in a sequence of two-phase natural convection problems with solid 
layered above the melt in a cylindrical ampoule of length L and radius R. The 
thermal boundary conditions for the Rayleigh-Benard problem are shown in Fig. 2a. 
Here the bottom of the ampoule is set at a temperature T, above the melting point 
T,,, and the top is set at T, below r,. The sidewall of the ampoule is taken to be 
perfectly conducting with a linear temperature profile varying between the 
temperature of the bottom and top of the ampoule. 

The thermal conditions for the vertical Bridgman system are shown in Fig. 2b and 
consist of hot and cold regions of the ampoule separated by an adiabatic or gradient 

MELT 
I 

FIG. 2. Model two-phase systems; (a) Rayleigh-BCnard problem, (b) prototype of vertical Bridgman 
crystal growth system. 
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zone designed to promote steep axial temperature gradients and a planar phase 
boundary at the solidification front. The top and bottom of the ampoule in the 
Bridgman system are taken to be adiabatic. The motion of the ampoule and the 
growth of the crystal are modelled by uniform axial velocities through the top and 
bottom of the ampoule and corresponds to assuming that the ampoule extends far 
enough into both isothermal regions of the furnace that transients caused by the ends 
of the ampoule can be neglected. The growth rates in the melt U, and solid U, are 
related by the ratio of densities d _= @Jp,) as U, = dU,$. 

Field variables are written in terms of a cylindrical coordinate system with its 
origin at the bottom of the ampoule and the height L is introduced as a length scale 
for constructing dimensionless variables. The shape of the melt-solid interface is 
described by a single-valued function of the radial coordinate z = h(r); then the unit 
vectors normal N and tangential t to this interface are 

N = (e, - Are,.)/\/1 + hf, t = (e, + h,e,)/JI + h,Z, (1) 

where h, = dh/dr and (e,, e;) are unit vectors in the cylindrical coordinate system. 
Steady axisymmetric convection in the melt is modelled by the Boussinesq 

equations 1201, which are in dimensionless form 

v  ’ v, = 0, (2) 

v[ . Vv, = -VP + Pr V’v, + Ra Pr 8,el, (3) 

0, . 00, = vie,, (4) 

where V = e, a/& + e, ~Y/az is the gradient operator in cylindrical coordinates. The 
dimensionless velocities and pressure are scaled with a,/L and p,af/L’, respectively, 
where a, is the thermal diffusivity of the melt and p, is the melt density. The dimen- 
sionless melt temperature 0, is formed from the dimensional field T,(r, z) as 0, = 
(r, - Tc)/(Tn - r,), where T, and T, are the maximum and minimum temperatures 
specified along the boundaries of the ampoule. The Prandtl and Rayleigh numbers are 
defined as Pr E v/a, and Ra = ,8g(T, - T,)L”/ va,, v is the kinematic viscosity of the 
melt, p is the coefficient of thermal expansion, and g is the acceleration of gravity. 

The dimensionless temperature is the crystal OS = (T,y - T,)/(T, - T,) is governed 
by the energy balance 

Pee; s VO, E ‘JV’O,~, (5) 

where y = as/a, is the ratio of thermal diffusivities in solid and melt and Pe z U,L/a, 
is the dimensionless pull rate of the crystal. The shape of the melt-solid interface is 
set by the condition for the equilibrium melting point em E (T,,, - T,)/(T, - T,) and 
by the interfacial energy balance at the solidification boundary. These interface 
conditions are written in dimensionless form as 

e*=e,=e,, (‘5) 

N.VO,-KN+VO,=SPe(e;N), (7) 
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where the contribution of latent heat is measured by the Stefan number S = 
AHf/cp(TH - T,) (AH, is the heat of fusion and cp is the heat capacity of the solid) 
and the ratio of thermal conductivities in the melt and solid is given by K = k,/k,. 

The boundary conditions on velocity along the ampoule walls and the melt-solid 
interface are 

u, = 0, u, = Pe, O<?-<A, z = 0, (8) 

u, = 0, u, = Pe, r=A, 0 <z <h(A), (9) 

v . t = Pe(e, . t), d(v . N) = Pe(ez 9 N), O<r<A, z = h(A), (10) 

where A = R/L is the aspect ratio of the cylinder. Conditions (10) at the melt-solid 
interface ensure no slip tangential to the crystal and incorporation of melt into the 
crustal at a rate proportional to the growth rate. 

The thermal boundary conditions for the two systems shown in Fig. 2 are incor- 
porated mathematically into the same set by introducing the artificial parameters a 
and ,f3, each ranging between zero and one. The thermal conditions at the top and 
bottom of the ampoule are 

(1 - a) 0, + a(ao,/az) = 0, z = 0, O<r<A, (11) 

(1 - a) 0, + a(m,/aZ) = 0, z= 1, O<r<A. (12) 

The mathematical combination of the boundary conditions along the sidewall (r = A) 
for the two systems is complicated by the three zones of the Bridgman furnace and 
the unspecified location of the melting temperature on the ampoule in the Rayleigh- 
Benard problem. We simplify this problem by setting 0, to occur at z = + in the 
latter system. For this case, the thermal conditions along the ampoule are divided 
into four sections to link the two systems: 

@,=(l-/3)11+22(0,-l)]fP, O<z<l,, (13a) 

(l-p)O,=(l-/3)[1+2z(O,- 1)1-l-/3(f3@,/&), l,<z<$, (13b) 

(1 -P)O=(l -/?)I@,-2@,(z-+)I, 4 <z < (I, + I*), (13c) 

o,~=(l-p)lo,-20,(z-f)l, (I, + I,) < z < 1, (13d) 

where 1, = G/L and I, = G/L are the dimensionless lengths of the hot and adiabatic 
zones of the Bridgman furnace shown in Fig. 2b. 

The Rayleigh-Benard problem is recovered from Eqs. (2)-(13) by setting the 
parameters (Pe, a,p) equal to zero. For all values of Rayleigh number, the equation 
set then has the static solution 

v = 0, p(r, z) = p. + Ra Pr(z - z*/2), 

O,(r, z) = 1 + 2z(O, - l), Oc(r, z) = 0, - 2O,(z - j), 
(14) 
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where pO is an arbitrary reference pressure. To obtain this solution the ratio of 
thermal conductivities must be specified according to the relationship K = 
O,/( 1 - 0,); then setting 0, close to one corresponds to a system where the 
conductivity of the melt is much higher than that of the solid. 

Cellular flows that deform the temperature fields and the melt-solid interface 
bifurcate from the static state at critical values of Rayleigh number determined as a 
function of 0,. Any change in the parameters (Pe, a,P) causes the purely axial 
temperature fields for either the static or uniformly translating (Pe # 0) melt and 
solid to no longer match the temperature profiles imposed along the sidewall of the 
ampoule. Radial temperature gradients in the melt result and drive thermal 
convection for any nonzero value of Ra. Thus the parameters (Pe, a, /I) cause imper- 
fections in the Rayleigh-Benard problem and rupture the junctions between the static 
and flow families that exist when Pe = a = p = 0. The imperfection caused by varying 
a is demonstrated in Subsection 4.2. 

The thermal boundary conditions for the Bridgman growth system are recovered 
from Eqs. (11 t( 13) by setting a = p = 1. The flow structures and the shapes of the 
melt-solid interface calculated in this configuration are attainable by a continuous 
transition from the Rayleigh-Benard problem; this link is established in 
Subsection 4.3. 

3. NUMERICAL METHODS 

3.1. Finite Element Analysis: The Isotherm-Newton Algorithm 

The steady solidification problem defined by Eqs. (2~( 13) is reduced to a finite- 
dimensional set of residual equations by representing velocities, pressure, temperature, 
and the shape of the melt-solid interface in expansions of finite-element basis 
functions. For an approximate shape of the phase boundary, both melt and solid are 
divided into quadrilateral elements and the field variables are approximated by mixed 
interpolation with finite-element bases using techniques that are well established for 
natural convection in confined geometries [2 1, 221. The velocities in the melt and the 
temperature fields in both phases are approximated by expansions of Lagrangian 
biquadratic polynomials (@‘(r, z)} 

[~~~] = 2 [ ;rJ @‘(r, Z), Os(Y, Z) = g, B~‘W(r, ?.I, (15) 

where N, and N, are the total numbers of biquadratic functions in melt and solid. The 
pressure in the melt is approximated by an expansion in a basis of continuous 
bilinear polynomials (Y’(r, z)} as 

.%I 
p(r. z) = K‘ Pi !f+(r, z). 

,r, 
(16) 

where M is the number of vertex nodes in the discretization of the melt 
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The shape of the melt-solid interface is approximated by a N,-dimensional set of 
Hermite cubic polynomials T’(r) as 

(17) 

constructed so that the derivative of the function h(r) is everywhere continuous. The 
number and spacing of the Hermite elements along the interface is the same as for the 
n, radial elements in the discretization of melt and solid. Details of the finite-element 
bases are found in texts [23,24] and in 1251. 

For an approximate interface shape, the weak forms of the field equations are 
formed by applying Galerkin’s method to Eqs. (2t(5) is the normal way for natural 
convection 124, 221. The final form of the equation set is reached by applying the 
divergence theorem to eliminate second-derivatives and by incorporating the 
boundary conditions on temperature and velocity along the ampoule wall, along with 
the interfacial energy balance (7) and by forcing the temperature field to be 
continuous across the interface. The nonlinear set of algebraic equations resulting 
from this discretization of the field equations is written out in 125 1 and is represented 
here as 

R”“(a, p; Ra, Pr) = 0, (18) 

where a is the vector of unknown coefftcients associated with the field variables and p 
is the vector of coefftcients in the expansion for the interface shape. The coefficients 
(pi} do not enter explicitly into the integrands of the Galerkin integrals, but are 
involved in setting the shapes of melt and solid in the limits of these integrals. The 
finite-element basis functions (@(r, z), Y’(r, z)) are also influenced by the coef- 
ficients (pi} through the shapes of the elements in the mesh. 

As suggested in 151, the isotherm condition Eq. (6) is distinguished for calculating 
the shape of the melt-solid interface. Equation (6) is put in discrete form by applying 
Galerkin’s method as 

Rf’(a, fi) = 1” P(r)[O,(r, h(r)) - O,] Jf+ h: dr, 
0 

(19) 

where i= l,..., N,. The complete set of algebraic equations for the field variables and 
interface shape is now 

R(x; Ra, Pr) = 
I 

R”“(a, fi; Ra, Pr) 

R”‘(a, P) I 
= 0, 

where xT = (a’, p’). 
Solution of Eqs. (20) by Newton’s method requires calculation of the Jacobian 

matrix 

(21) 



NATURAL CONVECTION IN STEADY SOLIDIFICATION 

at each iteration, where the submatrices have components 

(224 

Pb) 

The coefficients in the matrices J(” and 3”’ give the sensitivity of the residual 
equations to changes in the field variables and are evaluated by differentiating the 
residual equations. The two matrices SC’) and j(” measure the sensitivity of the 
residual equations to changes in the location of the melt-solid interface and so 
include the changes in the basis functions caused by moving the elements. Ettouney 
and Brown 151 map the entire free-boundary problem to regions with fixed boun- 
daries and a fixed finite-element mesh, so that these coefficients can be computed 
explicitly. Instead of this global mapping technique, we use the method proposed by 
Saito and &riven 17 1 and take advantage of the isoparametric mapping for each 
quadrilateral element in (Y, z) coordinates onto a square element where the depen- 
dence of the basis functions on the coefficients {pi) is expressed explicitly. This 
method was first applied in 161 to a steady solidification problem with natural 
convection and details are available in 125 1. 

The approximations in the field variables and melt-solid interface shape are 
updated at each Newton iteration according to the formula 

(23) 

where the correction vector ZCk+i’ is calculated as the solution of the linear equation 
set 

J(xck’) S’k+ ‘) = -R(xck); Ra, Pr), (24) 

where xCk)’ = (ack), PC”))‘. The equation set (24) is solved by Gaussian elimination 
using the frontal method of Hood [ 26 1. The quadratic convergence with iteration of 
the Isotherm-Newton method gave a factor of three in computational efficiency over 
a more standard successive approximation technique based on cycling between the 
calculation of the field variables, by solving Eqs. (18), and the calculation of the 
interface shape from the isotherm condition Eq. (6). 

The stream function for each flow computed by the Isotherm-Newton method is 
calculated by solving the linear equation 

I a$ 1 aw I a$ au au. -=---.L 
---7Z+T az* az ar ' r Lb* (25) 

using the Galerkin finite-element method with v(r, z) represented in a biquadratic 
basis. Streamlines are plotted as contours of y(r, z). 
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3.2. Analysis of Nonlinear Algebraic Equations 

Families of flow fields and melt-solid interface shapes are calculated by solution of 
Eq. (20) by Newton’s iteration with the first approximation generated by analytic 
continuation methods. For the Rayleigh number Ra = Rae + ARa, continuation 
methods [9, lo] give the linear approximation to the desired solution (a(Ra), P(Ra)) 
in terms of the known solution (a(Ra’), P(Ra”)) as 

where the tangent vectors aRa E (da/dRa>,,, and PHa E (4WRa)R,o are cahdated 

from 

JWa”), PW”)) 1;:: 1 = - (&) Ra,, (27) 

by performing a back-substitution using the factorization of the Jacobian matrix 
evaluated at the converged solution for Ra = Ra’. 

As discussed in several references 19-l 1 J, Newton’s method with continuation fails 
when either a bifurcation or limit point is encountered. At a bifurcation point the 
tangent vectors are nonunique and the Jacobian matrix is singular. Simple 
singularities (the only case considered here) are systematically detected by 
monitoring the sign of the determinant of J as Ra is varied; precise values for the 
critical points (Ray’} are determined by applying bisection in Ra. Limit points 
correspond to values of Ra where a family of solutions to Eq. (20) reverses direction 
in Ra and mark a breakdown in the parameterization in terms of Ra; this breakdown 
is manifested in a singular Jacobian matrix and an undefined tangent vector. We 
alleviate the difficulty at limit points by using a pseudo-arclength parameter s for 
specifying a solution instead of Ra 19, 27 ]. To do this, we introduce the additional 
residual equation 

R \,+, = (s -so)* + 11x(s) - x(s,>ll~ + I Ra(s) - Ra(s,)/*. (28) 

for defining Ra = Ra(s), where ]/ x/I2 is the R, norm of x, i.e., 11x11: = C,Fi, X; and 
(x(so), Ra(s,)) is a known solution. Newton’s method and continuation methods are 
used for solving the augmented set Eqs. (20) and (28) and follow directly from the 
presentation above. The (N, + 1)dimensional Jacobian matrix is nonsingular at limit 
points [ 91. 

The augmented Jacobian matrix formed from Eqs. (20) and (28) is singular at 
bifurcation points. At a bifurcation point along a family of solutions x,(Ra) a null 
vector y exists that satisfies 

J(xo(Ra,)y = 0. (29) 

As discussed elsewhere 19, 111, this vector describes the finite-element approximation 
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to the eigenfunction and gives an approximation to the new bifurcating soluion x(Ra) 
as 

x(Ra) = xo(Ra,) + sy, (30) 

where E is an amplitude factor, whose magnitude depends on the distance between Ra 
and Ra,. The null vector y is calculated by one iteration of inverse iteration for a 
zero eigenvalue and is scaled so that I( vllz = 1. The Newton iterations are coaxed into 
jumping from a base to a bifurcating flow family by using Eq. (30) as an initial 
approximation and adjusting e to be large enough that the iterations do not converge 
back to the original solution. More reliable and complicated schemes for jumping 
between solution families have been developed 19, 281, but were not found to be 
necessary for these calculations. 

The presence of critical values of Ra in the form of simple bifurcation and limit 
points signals changes in the linear stability of steady flow fields and interface shapes 
found by solving Eq. (20). To see this we consider the form of the transient equations 
that would result from a finite element discretization of the full unsteady problem. If 
the coefftcients ( ui, ui, pi, @II”, Oj’), hi} in the expansions (15t( 17) are taken to be 
time dependent, the transient field equations and boundary conditions can be reduced 
to the set of nonlinear ordinary differential equations 

M(x) $ = R(x; Ra), 

where M(x) is the finite-element mass matrix 1231 that depends on x(t) through the 
presence of the interface shape in the limits of the Galerkin integrals. Stability of the 
steady state x = x,, to small amplitude disturbances ie”’ 1s determined by substituting 
x = x,, + ie”’ into Eq. (31) and collecting terms that are linear in i; this yields 

aM( = J(x,)i, (32) 

where J(x,) is the Jacobian matrix evaluated about the steady-state solution. Clearly, 
a simple singular point in J(x,) corresponds to the vanishing of a real eigenvalue u 
and marks the exchange of stability of the solution x0 xith respect to the disturbance 
with spatial structure rZ. Then a stable flow must become unstable at either a simple 
bifurcation or limit point. We will use this criterion to determine the stability of flows 
to axisymmetric, temporally monotonic perturbations. Perturbations that have a time- 
periodic component lead to complex eigenvalues u; zero real components of these 
eigenvalues correspond to the bifurcation of time-periodic flows, so-called Hopf bifur- 
cations [ 13 1, and have been detected in other natural convection problems by 
calculation of the eigenvalues 1291. 
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4. NUMERICAL RESULTS 

The Isotherm-Newton method was used in conjunction with the techniques for 
nonlinear analysis described in the last section to study three two-phase problems 
from the sequence presented in Section 2. Besides, the limiting cases of the Rayleigh- 
Benard (Pe = a =/I = 0) and the Bridgman configuration (a = p = l), results for the 
intermediate configuration of an ampoule with imperfect thermal conditions (a = 1, 
/I = Pe = 0) are also presented. In each case, the aspect ratio is /i = 0.25, 
y = d = K = 1.0 and the dimensionless melting point 0, = 0.5. The calculations 
presented in Subsections 4.1-4.3 are for a melt with a Prandtl number of unity. 
Extensive studies of numerical accuracy presented in 161 demonstrated that the flow 
and thermal fields and interface shapes for this set of parameters are well approx- 
imated by a uniform mesh of four radial and eight axial elements in each phase, a 
total of 64 elements and 658 unknowns. This mesh was used in all calculations in 
these subsections. 

4.1. The Rayleigh-Be’nard Problem: a = b = Pe = 0 

The bifurcation points (Ray)} between the static solution Eq. (14) and solutions 
composed of steady cellular flows were located using the determinant of the Jacobian 

A =0.25 
t3m = 0.5 

R$’ I 1.83 x105 

ST 

.  

J 

I IO IO< IOJ IO‘+ 103 100 

RAYLEIGH NUMBER, Ra 

FIG. 3. Determinant of the Jacobian matrix evaluated about the static solution Eq. (14) as a 
function of Rayleigh number for 0, = 4. 
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matrix evaluated about the solution Eq. (14), which is plotted as a function of 
Rayleigh number on Fig. 3. The lowest two critical values were calculated as Ra:” = 
1.83 x 10’ and Ra:2’ ~4.94 x 105. The forms of the field variables and interface 
shapes in the bifurcating families were recovered by calculating the null vectors of the 
Jacobian matrix at the bifurcations points. Flows in the two families emanating from 
the value Ra = Ra:” were composed of a single axisymmetric cell with melt moving 
either upward (1U family) or downward (1D family) at the centerline of the ampoule. 
The flows originating at the second critical value Ra, (2) had two cells stacked axially 
and were divided into the 2U and 2D families depending on whether the motion in 
the top cell was up or down along the centerline. The stream function and 
temperature fields corresponding to flows in each family close to the bifurcation 
points are shown as the first plots in Figs. 5-8. In each case, the temperature field 
and melt-solid interface shape were not noticeably perturbed from the one- 
dimensional field and flat interface of the static solution Eq. (14). 

The critical values Raz” for the two-phase problem were compared directly to 
values for a liquid in a cylindrical ampoule twice as long as its radius and with a 
perfectly conducting sidewall. The values of Rail’ and Rai*’ calculated with the same 
linite-element approximation to the Boussinesq equations used here but applied to the 
single-phase system (see 1121 for details) are 1.88 x IO5 and 5.12 X 105, respectively: 
the structure of the steady flows that develop from the critical values is the same as 
described above. Comparing the critical values for the single- and two-phase systems 
suggests that the presence of the melt-solid interface has only a slight destabilizing 
effect on the static. melt. This slight difference in the critical Rayleigh numbers is 
caused by the freedom of the interface to deform. Increasing the conductivity of the 
solid (K + 1) so that its temperature is almost uniform increases the critical value 
Rail’ to a limiting value still below the value for the single-phase system. Even in this 
extreme case, the melt-solid interface may still deform. 

The differences in the flows caused by the melt-solid interface are more 
pronounced away from the critical values. The structures of the flows and interface 
shapes that evolve with increasing Rayleigh number from the two values 

@a, 2 (I) Ra”‘) were calculated by the scheme outlined in Section 3. These solutions 
are repres:nted in Fig. 4 by the dimensionless Nusselt number at the melt-solid 
interface for each flow 

I 
A 

Nu, = N. VO,&?+dr, 
0 

(33) 

plotted against Ra. Samples of the temperature and flow fields in each family are 
shown in Figs. 5-8. 

The first major difference between the one- and two-phase systems becomes 
apparent by examining the evolution of the ID and 1U families. The presence of the 
melt-solid interface causes the structure of the flows in these families to differ, 
contrary to the families in the single-phase problem where the 1D and 1U flows are 
identical up to a reflection of the velocity field, as described in Section 1. For the IU 
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FIG. 4. Families of axisymmetric steady states for the Rayleigh-Bknard problem. 

family of the melt-solid system, hot melt moved upward along the centerline of the 
ampoule and pushed the phase boundary substantially higher into the ampoule with 
increasing Ra; melt-solid interface shapes for members of this family are shown in 
Fig. 6. The single cell deformed continuously with the melt-solid interface until 
calculations were terminated at Ra = 6.0 x 10’ because the mesh no longer resolved 
adequately the shape of the melt-solid interface. Up to this value of Ra, no secondary 
flow cells were observed. 

For flows in the 1D family, hot melt rising along the wall impacted the melt-solid 
interface at its junction with the ampoule, as shown in Fig. 5. The linear temperature 
profile specified along the wall on the ampoule pinned the location of the phase 
boundary at z = f and damped the deformation of the interface with increasing Ra. 
For Rayleigh numbers greater than 6 x 105, a toroidal vortex formed in the upper 
corner of the melt and directed the hot fluid more toward the center of the interface. 
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The distortion of the phase boundary caused by this change in the flow field is shown 
by the sample interface shapes in Fig. 9. 

Flows and interface shapes in the 1D family were only found for Rayleigh 
numbers less than Ra = Ra, ‘u 1.1 x 106, where the flow family turned back to lower 
values of Ra. The flows near this limit point in Ra are distinguished by a weakening 
of the intensity of the main cell and a strengthening of the secondary cell cell with 
increasing Ra; see Fig. 5. 

Flows in the ID family beyond the limiting value Ra, connect with flows in the 2U 
flow family to form a continuous curve of steady solutions, as depicted in Fig. 4. 
Originating from Ra = Rai*’ with two cells of the same size, both cells in the 2U 
flows intensified with small increases in Ra and the Nusselt number increased. As 
shown on Fig. 7, the top cell weakened and the bottom cell dominated the flow for 
Rayleigh numbers greater than 6 x 105; the Nusselt number decreased as the 
circulation in the top cell became so weak relative to the bottom one that it shielded 
the melt-solid interface from the intense convection. At higher Rayleigh numbers the 
bottom cell pushed the top cell to the ampoule wall and the flow fields and interface 
shapes in the 2U family evolved to the same form as the solutions in the 1D family. 
These two families join at the limit point. 

A =0.25 
Pr = I 

-IL 
--- I D I 

: i 

+ 0 v+ 0 15 0.25 
RADIAL COORDINATE. r 

FIG. 9. Melt-solid interface shapes for flows in the 1U and 1D families for several values of 
Rayleigh number. 
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Flows in the 2D family evolved from the bifurcation point Rar’ towards higher 
values of Rayleigh number. Both cells intensified equally and the melt-solid interface 
was little deformed, as shown by the sample streamlines in Fig. 8. The stability of the 
flows represented on Fig. 4 to axisymmetric, temporally monotonic perturbations of 
the field variables and interface shape is assessed simply by examining the connec- 
tivity of the families. The static state is stable at zero Rayleigh number and loses 
stability at Rail’, where a single real eigenvalue u, crosses zero and becomes 
positive. The flows in the 1U and 1D families that originate from Ra:” are stable; 
i.e., all the real eigenvalues are negative. The steady states in the 1D family lose 
stability at the limit point Ra = Ra,, where the 1D family joins the 2U family. 
Conversely, the flows in the 2U family are unstable beyond Rak” to a single pertur- 
bation, but regain stability at Ra,. Flows in the 2D family are unstable to a single 
perturbation for the range of Rayleigh number studied here. 

4.2. Imperfect Rayleigh-Be’nard Problem: a = 1, fi = Pe = 0 

Forcing the ends of the ampoule to be adiabatic created radial temperature 
gradients that drove convective flows for all values of Ra. The family of flows and 
interface shapes calculated for Pr = 1 and p = Pe = 0 are represented in Fig. 10; 
isotherms and streamlines for sample solutions along this family are shown in 
Fig. 11. At low Rayleigh numbers, the flows were composed of a single cell with hot 
melt rising along the wall of the ampoule and resembled fluid motions in the 1D 
family for a = 0; see Fig. 1 la. At higher values of Ra, a second cell developed in the 
upper corner of the ampoule and intensified with increasing Ra, as shown by 
Fig. 1 lb. The family of solutions reached a limit point at Ra = Raj” N 1.16 x 10” 
and turned back to lower values of Ra. 

The structure of the solution family for the imperfect configuration (a = 1) up to 
and beyond Ra = Raj” can be predicted qualitatively by examining the effect of the 
imperfection on the solution families present for a = 0. Making the ends of the 
ampoule adiabatic ruptured the bifurcation points and cause fluid flow for all 
members of what was the static family. As shown on Fig. 1, the solutions to the 
imperfect problem for values of Ra less than Raj” are composed of the static and 1D 
families of the perfect problem which combine smoothly when a is not equal to zero. 
The 1U family of flows couple with the reminants of the static family beyond the 
original critical point Rail’ to form a continuous curve of solutions with a limit point. 

The limit point Ra I” located in the solution family for the imperfect 
Rayleigh-Benard problem was analogous to the limit point Ra, that existed in the 1D 
family for a = 0. In flows along the subcritical solution branch for Ra less than Raj”, 
the second cell continued to intensify and spread over the top of the melt until the 
patterns of streamlines qualitatively resembled flows belonging to the 2U family; see 
Fig. 1 lc. This resemblence was expected from the connection of the 1D and 2U flow 
families for the perfect problem (a = 0) at the limit point Ra, and the fact that limit 
points are unaltered by imperfections [ 131. 

The flow family in the imperfect problem turned back toward higher values of 
Rayleigh number at Ra = Raj” = 7.11 x 105. A sample flow along this new super- 
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FIG. 10. Families of axisymmetric steady states for the imperfect Rayleigh-Btnard problem with 
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critical branch is displayed as Fig. 1 Id. Here, the upper cell was more intense than 
the lower one, which was forced toward the bottom of the ampoule, and resembled a 
flow in the 1U family for a = 0 with the lower cell positioned to account for the 
radial gradient introduced by the imperfection. The existence of the second super- 
critical solution branch for a = 1 and its similarities with flows in the 1U family were 
expected because of the connectivity of the 1D and 2U families for a = 0 and because 
the 1U family evolved supercritically with respect to Rayleigh number. The limit 
point Ra!” calculated for a = 1 is precisely the limit point proposed in Fig. I for 
separating the 1U and static flow families in a slightly imperfect (a < 1) system. 

The stability of each flow for a = 1. as indicated in Fig. 1 Id, was reasoned from 
the stability of the flows for the perfect Rayleigh-Bkard problem and the evolution 
of the flows with changes in a. Both the initial branch of the solution family evolving 
from zero Ra up to the limit point Ra/” and the second supercritical branch that 
exists for Rayleigh numbers greater than Raj” are stable to temporally monotonic 
and spatially axisymmetric disturbances. For Rayleigh numbers in the range 
7.11 X 10” < Ra < 1.16 x 10h both branches c&ntain solutions and two stable steady 
solutions are possible. 

\ \ \ 1 \ I \ 
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\ i --- UNSTABLE \ 

\ 
\ !  
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Ra=Ro,=2 2x 10” (5) 

i 
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I  1 I  I  ,  ,  1, /  I  1 

2 4 6 8 IO 12 14 16 I8 20 22 24 

RAYLEIGH NUMBER Ro (x 106) 

FIG. 12. Families of axisymmetric steady states for the vertical Bridgman system with a = p = 1. 
Pe = 0, Pr = 1. and A = 0.25. Letters refer to sample isotherms and streamlines plotted in Fig. 13. 
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phase system. Calculations for any of these systems undertaken without the benefit of 
the schemes for tracking solution families will no doubt fail to converge near Ra, and 
will give no clue to the sudden change in the structure of the flow family at this point. 
The numerical methods presented here have been used in an extensive study of the 
flow field and melt-solid interface in the vertically stabilized (melt above crystal) 
Bridgman system [30]. 

The changes in the flow structure for the destabilized vertical Bridgman system 
presented in Subsection 4.3 are simply understood when this configuration is thought 
of as the limit of a sequence of thermally imperfect solidification problems starting 
from the perfect two phase Rayleigh-Bknard geometry. Changes in the number of 
cells in the melt of the Bridgman system result from smooth transitions between flows 
classified in separate bifurcating families for the perfect Rayleigh-Binard problem. 
Understanding the effect of small changes in the thermal boundary conditions on the 
connectivity of these flow families makes it possible to construct a qualitative picture 
of the flows in the more complicated system from the numerical results for the perfect 
problem. 

The shape of the melt-solid interface and the flow field are only weakly coupled by 
convection in the solidification problems studied here. Interface shapes predicted by 
models for solidification of nondilute alloys [ 121 and for microscopic instability 
during solidification [ 3 1 ] are both extremely sensitive to the local composition of the 
melt and are being studied by the combination of Galerkin finite-element approx- 
imations, Newton’s method and techniques from bifurcation analysis used here. These 
methods are equally applicable to other free-boundary problems, such as arise in free- 
surface fluid mechanics [7,32] and in the study of confined plasmas 133, 341. 
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